# Networks-on-Chip,

a communication subsystem for next generation VLSI design

#### Dr. Nizar Dahir

IT Research and Development Center, University of Kufa





2<sup>nd</sup> Annual Workshop on Embedded Systems

# Outlines

#### Introduction

- NoC Design Considerations
- NoC Prototype Examples
- Research Project 1: Newcastle University
- Research Project 2: University of York

#### Introduction

#### **VLSI** Trends

#### Computing industry is performance hungry



#### **VLSI** Trends

Technology trends
 Smaller transistors -> Higher integration density
 Complexity, power and thermal hazards

#### Moor's Law



#### The wire delay Gap



(http://www.itrs2.net/)

#### Technology & Architecture Trends

- Architectural trends
  - ►Go parallel!
  - Requires: Efficient on-chip communication
  - Key challenges:
    - Scalability
    - ▶ Performance
    - ► Power

#### **On-chip Interconnection Solutions**



Point-to-Point



## **On-chip Interconnection Solutions**



**Packet Switched Network** 

#### **On-chip Interconnection Types**



# Why NoCs ?

- Reusability
- Flexibility and Fault Tolerance
- Globally Asynchronous Locally Synchronous (GALS)
- Low Power and Dark Silicon
- Scalability
- Standard Design Methods using Layered design framework:
  - Physical (Links)
  - Network (Routing)
  - Application (mapping, scheduling etc.)

#### **NoC Design Considerations**

![](_page_13_Picture_1.jpeg)

![](_page_14_Figure_0.jpeg)

# NoC Abstraction vs. OSI

![](_page_15_Figure_1.jpeg)

# **NoC Topologies**

![](_page_16_Figure_1.jpeg)

### **Regular Mesh**

![](_page_17_Figure_1.jpeg)

#### **Router Architecture**

![](_page_18_Figure_1.jpeg)

# **Routing Algorithm**

- Attributed by
  - Number of destinations
    - Unicast, Multicast, Broadcast?
  - Adaptivity
    - Deterministic, Oblivious or Adaptive
  - Implementation (Mechanisms)
    - Source or node routing?
    - ► Table or circuit?

#### Number of destinations

![](_page_20_Figure_1.jpeg)

Adaptivity

#### Deterministic or static

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_3.jpeg)

#### Implementation (Mechanisms)

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

### Implementation (Mechanisms)

Source Routing

E

![](_page_23_Figure_2.jpeg)

#### NoC Prototype Examples

![](_page_24_Picture_1.jpeg)

![](_page_25_Picture_0.jpeg)

# **NoC Prototype Examples**

SpinNNaker System, University of Manchester

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_26_Figure_4.jpeg)

![](_page_26_Picture_5.jpeg)

#### **Research Project 1**

![](_page_27_Picture_1.jpeg)

#### **Research Project 1: Newcastle University**

![](_page_28_Figure_1.jpeg)

#### **Research Project 1: Newcastle University**

![](_page_29_Figure_1.jpeg)

#### Research Project 1: Newcastle University

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

#### **Research Project 2**

![](_page_31_Picture_1.jpeg)

Continuous on-line adaptation in many-core systems

![](_page_32_Figure_2.jpeg)

Continuous on-line adaptation in many-core systems
Monitoring

Power, Temperature, Quality-of-Service (QoS), Faults

Control

Frequency, Voltage, Application mapping, NoC Routing

#### Optimisation

Evolutionary Algorithms (e.g GA, ACO etc.)

Aims at

Reliability

Performance

Scalability

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_36_Picture_0.jpeg)

#### **References and Tools**

► The most referred papers according to Google (#cit.)

- ▶ Benini (4259), Networks on Chips: A New SoC Paradigm
- ▶ Dally (<u>3866</u>), Route Packets, Not Wires: On-Chip Interconnection Networks
- ▶ Kumar (1454), A Network on Chip Architecture and Design Methodology
- Guerrier (<u>1192</u>), A Generic Architecture for On-Chip Packet-Switched Interconnections
- Tools
  - Simulators list
    - https://networkonchip.wordpress.com/2011/02/22/simulators/
  - Resources

http://www.cl.cam.ac.uk/~rdm34/onChipNetBib/tools.html

# Institutions and Sponsors

![](_page_38_Figure_1.jpeg)

#### Thank You !