
Interfacing Techniques in Embedded
Systems

Workshop on Real Time Control & Embedded System

Training & Development Department
training@uruktech.com www.uruktech.com

Hassan M. Bayram

 Introduction

 Serial and Parallel Communication

 Serial Vs. Parallel

 Asynchronous and Synchronous Serial Communication

 UART

 SPI

 I2C

 USB

 Talking with Arduino Project.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Communication is the act of giving,
receiving or exchanging
information, ideas and opinions so
that the message is completely
understood by both parties.

• In Microcontrollers, communication
is simply exchanging data between
two or more microcontrollers.

• There are many protocols for
communication, but all of those are
based on either serial
communication or parallel
communication.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Parallel communication is the process of
sending or receiving multiple bits at the same
time through parallel channels.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Serial communication is the process of sending or
receiving data in one bit at a time pattern.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Serial Communication:

• One data bit is transferred at a

time.

• Slower.

• Less number of cables are

required to transmit data.

• Parallel Communication:

• Multiple data bits are transferred

at a time.

• Faster.

• Higher number of cables are

required to transmit data.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Bit Rate: Number of bits that are transmitted per unit time.
• Baud rate: number of signals or symbols changes that occur per second.

Where, a symbol is one or several voltages, frequency, or phase setting.
– For two microcontrollers to communicate serially they should have the same

baud rate, else serial communication won’t work.
– Different baud rates are available for use, ex: 2400, 4800, 9600, 19200,

38400, etc.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• In parallel circuit, a clock skew is
the time difference in the arrival
of two sequentially adjacent
registers.

• time lag in the data bits through
different channels of the same
bus.

• It is inevitable due to difference
in physical conditions of the
channels, like temperature,
resistance, path long, etc.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Crosstalk is a phenomenon by
which a signal transmitted on
one channel of a transmission
bus creates an undesired
effect in another channel.

• An undesired capacitive,
inductive, or conductive
coupling is usually what is
called crosstalk, from one
circuit, part of circuit, or
channel to another.

What limits parallel communication?

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Speed:
Speed of Parallel Link = Bit Rate*number of channel
But, clock skew reduces the speed of every link to the
slowest of all of the links.

• Cable Length:
Crosstalk creates interference between the parallel lines,
and the effect only magnifies with the length of the
communication link. This limits the length of the
communication cable that can be used.

Advantages of Serial over Parallel

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Clock skew between different channels is not an
issue.

• Fewer connection is required for serial
communication, occupies less space, and allows
better isolation of the channel from its surroundings.

• Cross talk is not an issue, because there are fewer
conductors in proximity.

• Serial is cheaper to implement.
• Many devices and peripherals have serial interface.

How is data sent serially?

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• When a particular data set is in the microcontroller, it is in parallel form, and any bit can
be accessed irrespective of its bit number.

• when data set is transferred into the output buffer to be transmitted, it still in parallel
form.

• The buffer converts the data into serial data (Parallel In Serial Out).
• Data is then transmitted in Serial mode.
• When data is received by another microcontroller in its receiver buffer, data is to be

converted back to its parallel form using (Serial In Parallel Out)
• Serial data can be transferred in two modes: Asynchronous and Synchronous.

Asynchronous Data Transfer

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Data transfer is called Asynchronous when data bits are “not
Synchronized” with a clock line (there is no clock line).

• Asynchronous data transfer has a protocol, which is usually as follow:
– The first bit is always the START bit, which signifies the start of

communication on the serial line.
– DATA bits (usually 8-bits).
– STOP bit or bits, which signals the end of data packet.
– PARITY bit may be used just before the STOP bit

Synchronous data transfer

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Synchronous data transfer is when the data bits are “synchronized”
with clock pulse.

• The concept for Synchronous data transfer is as follow:
– Data bit sampling is done with respect with clock pulses.
– Since data are sampled depending upon clock pulses, and since the

clock sources are very reliable, so there is much less error in
synchronous as compared to asynchronous.

Serial communication Terminologies

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• MSB/LSB: since data is
transferred bit-by-bit in serial
communication, one needs
to know which bit is sent out
first MSB or LSB.

• Simplex Communication:
• Half-Duplex Communication:
• Full-Duplex Communication:

Serial communication protocols

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• A variety of communication protocols have been
developed based on serial communication in the
past few decades, some of which are:
– UART

– SPI – Serial Peripheral Interface.

– I2C – Inter-integrated Circuit.

– USB – Universal Serial Bus.

– RS-232 – Recommended Standard 232.

UART

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• UART stands for “Universal Asynchronous Receiver
Transmitter”.

• It is basically a hardware that convert parallel data into
serial data.

• UART adds specific bit to the data packet instead of the
clock signal.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

SPI – Serial Peripheral interface

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Common Synchronous communication protocol used by
many devices. For example: SD card, RFID card reader,
and 2.4GHz wireless transmitter/receivers.

• Sending data without interruptions.
• Master/Slave relationship, where master controls data

transfer.

SPI – Serial Peripheral interface

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Designed to transfer data between various IC chips, at very high
speed, hence short bus connections is used to maintain stability.

• Data and control lines of the SPI are:
– Master Out Slave In (MOSI) also called Serial Data In (SDI).
– Master In Slave Out (MISO) also Called Serial Data Out (SDO).
– Serial Clock (SCLK or SCK): generated by the master for

Synchronization.
– Slave Select (SS) on the master and Chip Select (CS) on the slave.

SPI – Serial Peripheral interface

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

Daisy-Chained SPI Bus SPI bus in independent slave configuration

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

Master outputs the clock signal

The master switches the SS/CS pin to a low voltage state, which activates the slave

The master sends the data one bit at a time to the slave along the MOSI line,
the slave reads the bits as they are received

If a response is needed, the slave returns data one bit at a time to the master
along the MISO line. The master reads bits as they are received.

I2C Inter Integrated Circuits bus interface

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Bi-directional 2-wire, Multi Master, Low Bandwidth, and short
distance serial communication bus protocol.

• Has a 7-bit address space with 16 reserved address, hence 112 is the
maximum number of nodes that can communicate on the same bus.

• The two bi-directional lines are:
– SDA: Serial Data line for data transfer
– SCL: Serial Clock line for clock signal and synchronization.

• Typical voltage used are +5V and +3.3V

Masters/Slaves Connections

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

The master sends the start condition to every connected slave by switching the
SDA line from a high voltage level to a low voltage level before switching the SCL

line from high to low

The master sends or receives the data frame:

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

To stop the data transmission, the master sends a stop condition to the slave by
switching SCL high before switching SDA high:

USB Universal Serial Bus

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• It is a set of interfacing specifications for high speed wired
communication between electronic systems and peripherals
and devices using single standardized interface socket.

• Advantages of USB:
– Low cost.
– Expandability.
– Auto configuration.
– Hot swapping.
– Providing power to the bus.

USB Versions

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Two types of connectors are used within USB:
– “A” connectors to upstream toward the computer.
– “B” connectors for downstream and connect to individual

devices.

• Four lines within the USB Cable:
– +5 volts.
– GND.
– +D.
– -D.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• All Arduino boards have at least one hardware serial
port.

• Some Arduino boards have more than one hardware
Serial ports. Like Arduino Due and Arduino Mega.

• The hardware Serial port is connected to the USB port.

• Using the USB ports the Arduino board can exchange
data, and indirectly accessing all available resources via a
proxy program like Processing.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

UNO

Due

Mega

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• An Arduino board may or may not contain an
on-board chip to convert the hardware serial
port to USB.

• A standard Arduino has a single serial port, but
serial communication is also possible using
software libraries.

• Software serial is not as fast as the hardware
serial.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

• Using Serial Communication via USB port to establish data
exchange between an Arduino Uno platform and a PC.

• Arduino Establishes a communication by sending a greeting
messages to the PC (Serial Monitor).

• Giving number of options to the user to choose from.
• Selecting an option by sending data to the Arduino to

execute one of the following:
– Turning a LED (Pin 13) ON.
– Turning a LED (Pin 13) OFF.
– Welcoming the audience.

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

assigning digital port 13
To LED variable

Defining a
String Variable
named input

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

Setting LED as an output
port

Establishing a serial
communication session

with 9600 baud rate.

Emptying the Serial Buffer

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

Interfacing Techniques in Embedded Systems
Workshop on Real Time Control & Embedded System

input = input + (char) Serial.read();

While
(Serial.availab

le()>0)

H E L L O
H

H

E

E

L

L

L

L

O

O

Arduino Serial Buffer

input

True

False

Thank you …

Q&A

